A Multi-Objective DIRECT Algorithm Towards Structural Damage Identification with Limited Dynamic Response Information

نویسندگان

  • Pei Cao
  • Qi Shuai
  • Jiong Tang
چکیده

A major challenge in Structural Health Monitoring (SHM) is to accurately identify both the location and severity of damage using the dynamic response information acquired. While in theory the vibrationbased and impedance-based methods may facilitate damage identification with the assistance of a credible baseline finite element model since the changes of stationary wave responses are used in these methods, the response information is generally limited and the measurements may be heterogeneous, making an inverse analysis using sensitivity matrix difficult. Aiming at fundamental advancement, in this research we cast the damage identification problem into an optimization problem where possible changes of finite element properties due to damage occurrence are treated as unknowns. We employ the multiple damage location assurance criterion (MDLAC), which characterizes the relation between measurements and predictions (under sampled elemental property changes), as the vector-form objective function. We then develop an enhanced, multi-objective version of the DIRECT approach to solve the optimization problem. The underlying idea of the multi-objective DIRECT approach is to branch and bound the unknown parametric space to converge to a set of optimal solutions. A new sampling scheme is established, which significantly increases the efficiency in minimizing the error between measurements and predictions. The enhanced DIRECT algorithm is particularly suitable to solving for unknowns that are sparse, as in practical situations structural damage affect only a small number of finite elements. A number of test cases using vibration response information are executed to demonstrate the effectiveness of the new approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VISCOUS DAMPER PLACEMENT OPTIMIZATION IN CONCRETE STRUCTURES USING COLLIDING BODIES ALGORITHM AND STORY DAMAGE INDEX

Dampers can reduce structural response under dynamic loads. Since dampers are costly, the design of structures equipped with dampers should make their application economically justifiable. Among the effective cost reduction factors is optimal damper placement. Hence, this study intended to find the optimal viscous damper placement using efficient optimization methods. Taking into account the no...

متن کامل

Multi-Damage Detection for Steel Beam Structure

Damage detection has been focused by researchers because of its importance in engineering practices. Therefore, different approaches have been presented to detect damage location in structures. However, the higher the accuracy of methods is required the more complex deliberations. Based on the conventional studies, it was observed that the damage locations and its size are associated with dynam...

متن کامل

A NEW APPROACH BASED ON FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL DAMAGE IDENTIFICATION

In this study, the finite element model updating was simulated by reducing the stiffness of the members. Due to lack of access to the experimental results, the data obtained from an analytical model were used in the proposed structural damage scenarios. The updating parameters for the studied structures were defined as a reduction coefficient applied to the stiffness of the members. Parameter v...

متن کامل

Structural Damage Identification of Plate Structures based on Frequency Response Function and Natural Frequencies

In this paper, a structural damage identification method (SDIM) is developed for plate-like structures. This method is derived using dynamic equation of undamaged/damaged plate, in which local change in flexural rigidity is characterized utilizing a damage distribution function. The SDIM requires to modal data in the intact state and frequency response of damage state where most of vibration ba...

متن کامل

DAMAGE DETECTION IN THIN PLATES USING A GRADIENT-BASED SECOND-ORDER NUMERICAL OPTIMIZATION TECHNIQUE

The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.03575  شماره 

صفحات  -

تاریخ انتشار 2017